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Abstract

This paper proposes a modal identification system based on vector backward auto-regressive with
exogeneous (VBARX) model. The model is an extension of vector backward auto-regressive (VBAR). Both
the backward models offer the same benefits in selecting physical modes, since both can provide a
determinate boundary that separates system modes from spurious modes. The VBAR model can identify
the structural parameters from only output data. In some circumstances, if the input data are available, the
extended model, VBARX model, provides an additional advantage over the VBAR model. In this study, an
equivalent state-space model derived from measured input and output data is transformed from the
VBARX model. Consequently, the structural modal parameters can be estimated accurately using the
equivalent state-space model. Two examples of modal identification are presented to demonstrate the
availability and effectiveness of the proposed VBARX method. (1) Numerical data simulated in a 3-d.o.f.
dynamic system with various types of input data and various noise levels. (2) Experimental data obtained
from the National Center for Research on Earthquake Engineering (NCREE) in Taiwan, concerning
five-story 1

2
-scale steel structure under a shaking table test.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Various methods for identifying the modal parameters have been developed over the last few
decades. Methods of modal identification can be categorized as time-domain method or
frequency-domain method. Both types of methods have their merits in extracting modal
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parameters from measured data. Frequency-domain methods are popular and still predominate
engineering practice [1,2]. Time-domain methods are useful for solving problems with many
modes and multi-channel measurement, and also for those that involve closely spaced and non-
proportional modes. Time-domain methods can directly be applied to the measured response
data; hence, this paper focused on time-domain methods.
Works on time-domain methods appeared in the late 1970s; these early versions included the

Ibrahim time domain method [3,4] and the polyreference method [5–7]. The eigensystem
realization algorithm (ERA) of Juang and Pappa [8,9] can determine a state-space model
from impulse responses. Van Overschee and De Moore proposed the numerical algorithms
for subspace state-space system identification (N4SID) [10], and Verhaegen and Dewilde
proposed the multivariable output-error state space model identification (MOESP) [11]. Both
methods are regarded as subspace methods [12] for deriving a state-space model directly from
input and output data. The Prony signal analysis method [13] and the time series model [14,15]
have also been proposed during the last 30 years to identify modal parameters in various
engineering fields.
Overspecifying the order of model is a popular approach among the time-domain methods for

improving the accuracy of identified modal parameters from measured data with noise. This work
concentrates on time series models to extract the modal parameters from measured input and
output data. The high order auto-regressive (AR) and auto-regressive with exogeneous (ARX)
models yield numerous of eigenvalues, only some of which belong to physical modes. Selecting
physical modes and reducing the high order model to an equivalent physical model are key issues
of the time-domain method.
Kumaresan and Tufts [16] presented a backward prediction model to determine the frequencies

and damping factors from single-channel response data. Hollkamp and Batill [17] developed a
single-input–single-output backward auto-regressive moving average (ARMA) model to predict
the transient response of the sailplane subject to arbitrary inputs. Cooper [18] applied a backward
prediction error model to extract the natural frequencies and damping factors from single-channel
response data and indicated that the backward model has an advantage in separating physical
modes from spurious modes. Hung and Ko [19] proposed the VBAR model to estimate the modal
parameters and normal mode shapes from purely measured output data.
All the eigenvalues in the discrete-time domain estimated from a forward AR or ARX

model by the least-square technique are always inside or on the unit circle in the z-plane.
Therefore, the separation of system eigenvalues from spurious eigenvalues is difficult. In contrast,
system eigenvalues computed by the backward model are outside or on the unit circle, and
the spurious ones lie inside the unit circle. Accordingly, determining the system eigenvalues
for the backward model is easier than for the forward model. When input information is
absent, the modes induced from the input are unknown. Consequently, the determination of
system modes using VBAR model is difficult. This paper proposes a VBARX model for
selecting modes, deriving an equivalent state-space model and estimating modal parameters.
The exogeneous (X) part implies that the computation of the VBARX model involves input
excitation data. The VBARX model extends the applicability and increases the accuracy and
practicability of the VBAR model when input data are available. The VBAR model can be
regarded as a special case of the VBARX model in which the input part of the VBARX model is
neglected.
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2. Vector backward ARX model

The input and output relationship of a linear system can be described by a difference model.
Given a measurement system with m outputs and r inputs, the difference equation for the input
utARr�1 and output ytARm�1 at discrete time t is

yt ¼
Xq

i¼1

aiytþi þ
Xq

j¼0

bjutþj þ et: ð1Þ

This difference model is called the VBARX (m; q; r) model. The subscript t is the discrete time
index, and q is the order of the VBARX model. The matrices, aiARm�m and bjARm�r; are the
backward auto-regressive (BAR) parameter matrix and the backward exogeneous (BX) parameter
matrix, respectively. etARm�1 is the prediction error. When the input is absent, such that r ¼ 0;
the VBARX (m; q; r) model reduces to a VBAR (m; q) model. If the number of time series data is
N; then Eq. (1) can be expanded from time step t ¼ 1 to N � q; and the following linear matrix
equation is established:

*yq ¼ Pq
*Yq þ *eq; ð2Þ

where

Pq ¼ ½ a1 ? aq b0 b1 ? bq �ARm�ðmqþrðqþ1ÞÞ; ð3aÞ

*yq ¼ ½ y1 y2 ? yN�q �ARm�ðN�qÞ; ð3bÞ

*Yq ¼

y2 y3 ? yN�qþ1

y3 y4 ? yN�qþ2

^ ^ ^ ^

yqþ1 yqþ2 ? yN

u1 u2 ? uN�q

u2 u3 ? uN�qþ1

^ ^ ^ ^

uqþ1 uqþ2 ? uN

2
666666666666664

3
777777777777775

ARðmqþrðqþ1ÞÞ�ðN�qÞ; ð3cÞ

*eq ¼ ½ e1 e2 ? eN�q �ARm�ðN�qÞ: ð3dÞ

The BAR and the BX parameter matrices can be solved by the least-squares method.
A state vector consisting of output and input vectors of q-time steps is introduced as

*zt ¼ yT
t yTtþ1 ? yT

tþq�1 uT
t uT

tþ1 ? uT
tþq�1

n oT

ARðmþrÞq�1: ð4Þ

The following state-space equation is derived:

*zt ¼ *A*ztþ1 þ *But; ð5Þ
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where

*A ¼
*A11

*A12

0 *A22

" #
ARðmþrÞq�ðmþrÞq; *B ¼

*B1

*B2

" #
ARðmþrÞq�r ð6a;bÞ

and

*A11 ¼

a1 a2 ? aq�1 aq

Im 0 ? 0 0

^ ^ ^ ^ ^

0 0 ? Im 0

2
6664

3
7775ARmq�mq; *A12 ¼

b1 b2 ? bq

0 0 ? 0

^ ^ ^ ^

0 0 ? 0

2
6664

3
7775ARmq�rq; ð7a;bÞ

*A22 ¼

0 0 ? 0 0

Ir 0 ? 0 0

^ ^ ^ ^ ^

0 0 ? Ir 0

2
6664

3
7775ARrq�rq; ð7cÞ

*B1 ¼

b0

0

^

0

2
6664

3
7775ARmq�r; *B2 ¼

Ir

0

^

0

2
6664

3
7775ARrq�r: ð8a;bÞ

The backward difference model specified by Eq. (1) can also be rewritten as follows:

yt ¼ *C*ztþ1 þ *Dut; ð9Þ

where

*C ¼ ½ a1 ? aq b1 ? bq �ARm�ðmþrÞq; *D ¼ b0ARm�r: ð10a;bÞ

Eqs. (5) and (9) are the state equation and the output equation of the VBARX model,
respectively. *A; *B; *C and *D are the discrete time backward state-space system matrix, input
matrix, output matrix and transmission matrix, respectively.
The measurement noise disturbs the estimation of eigenvalues of the VBARX model when the

signal-to-noise ratio (SNR) of the observed time series data is not sufficiently high. Overspecifying
the order of model q is an effective method for increasing the accuracy of the eigenvalues
estimated from noisy measurements. The number of vibration modes of a continuous structure is
theoretically infinite. However, only the modes within the analysis frequency bandwidth, which
depends on the sampling rate and the filtering passband of measured data, can be determined
correctly. If the measured data for a structure contain n vibration modes, then the state equation
includes n-pairs of conjugate system eigenvalues. The reduction of an equivalent state-space
model then is obtained according to the following description, assuming that the system modes
have been completely separated from the spurious modes.
A VBARX (m;q;r) model has ðm þ rÞq eigenvalues. Typically, ðm þ rÞq greatly exceeds 2n; and

the order of the VBARX model must be selected, such that qX2n=ðm þ rÞ to estimate accurately
the modal parameters; otherwise, some system modes will be lost, and incorrect results may be
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obtained. The polynomial of the backward state-space system is

pbðlÞ ¼
YðmþrÞq

i¼1

ðl� liÞ ¼
Y2n

i¼1

ðl� liÞ
YðmþrÞq

i¼2nþ1

ðl� liÞ ¼ 0: ð11Þ

The total of ðm þ rÞq eigenvalues include 2n system eigenvalues and ðm þ rÞq � 2n spurious
eigenvalues. The spurious modes should be removed, and the system modes should be retained to
establish the physical state equation of motion to determine the modal parameters. Kumaresan
and Tufts [16] stated that the magnitudes of the eigenvalues of the backward model are:

lij jX1:0 for ip2n; and lij jo1:0 for i > 2n: ð12Þ

For the backward model, the first 2n eigenvalues outside or on the unit circle at the origin in the
z-plane are attributed to the system modes, and the remaining ðm þ rÞq � 2n eigenvalues are the
spurious modes. The state equation derived from the proposed VBARX model provides a
determinate boundary between the system modes and the spurious modes.
The backward state-space system matrix *A can be decomposed into eigenvector matrix C and

diagonal eigenvalue matrix L: According to Eqs. (11) and (12), the matrices C and L can be
partitioned into sub-matrices as follows [19]:

*A ¼ CLC�1 ¼
Css Csn

Cns Cnn

" #
Ls 0

0 Ln

" #
Css Csn

Cns Cnn

" #�1

; ð13Þ

where the subscripts ‘‘s’’ and ‘‘n’’ indicate ‘‘system’’ modes and ‘‘spurious’’ modes, respectively. Ls

and Ln are the diagonal sub-matrices that contain the 2n system eigenvalues and ðm þ rÞq � 2n
spurious eigenvalues, respectively. The matrices *B; C�1 *B and *C are also partitioned as

*B ¼
*Bs

*Bn

" #
; C�1 *B ¼

Bs

Bn

" #
; ð14a;bÞ

*C ¼ ½ *Cs
*Cn �: ð15Þ

From Eqs. (13) to (15), a reduced order backward state-space model in the form of Eqs. (5) and
(9) can be constructed by removing the corresponding columns and rows of ðm þ rÞq � 2n

spurious modes, as follow:

A0
d ¼ CssLsC�1

ss ; B0
d ¼ CssBs; ð16a;bÞ

C0
d ¼ *Cs þ *CnLnsC�1

ss ; D0
d ¼ *D; ð16c;dÞ

where A0
dAR2n�2n; B0

dAR2n�r; C0
dARm�2n and D0

dARm�r are the reduced state system matrix, the
input matrix, the output matrix and the transmission matrix, respectively.
The reduced order backward state-space model in discrete time represented by ðA0

d ;B
0
d ;C

0
d ;D

0
dÞ

can be transformed into the forward model ðAd ;Bd ;Cd ;Dd Þ: The relationships between the
forward and backward state-space matrices are [19]:

Ad ¼ A0�1
d ; Bd ¼ �A0�1

d B0
d ; ð17a;bÞ

Cd ¼ C0
dA0�1

d ; Dd ¼ D0
d � C0

dA0�1
d B0

d : ð17c;dÞ
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Then, the reduced order state-space model in discrete time, ðAd ;Bd ;Cd ;DdÞ; can be transformed
into a continuous time model, represented by ðAc;Bc;Cc;DcÞ; as follows [20]:

Ac ¼ lnðAdÞ=Dt; Bc ¼ AcðAd � IÞBd ; ð18a;bÞ

Cc ¼ Cd ; Dc ¼ Dd : ð18c;dÞ

3. Extraction of modal parameters

The equation of motion for a structural system with n d.o.f.s is expressed as

M .xðtÞ þ E ’xðtÞ þ KxðtÞ ¼ B0uðtÞ; ð19Þ

where t is the continuous time; xðtÞARn�1 is the displacement vector; uðtÞARr�1 is the force vector;
MARn�n is a positive-definite mass matrix; EARn�n is a positive-semidefinite damping matrix;
KARn�n is a positive-semidefinite stiffness matrix, and B0ARn�r is the input influence matrix. The
dots denote differentiation with respect to time. Not all of the d.o.f.s are observed in the practical
experimental identification of the dynamic characteristics of structures. Moreover, the sensors of
displacement, velocity, and acceleration may be arranged at different locations to measure
simultaneously the different types of dynamic response. For a measurement system with m output
sensors on structures, the output equation of the structural system for combined displacement,
velocity and acceleration (DVA) measurements is expressed as [20]

yðtÞ ¼ ca .xðtÞ þ cv ’xðtÞ þ cdxðtÞ; ð20Þ

where yðtÞARm�1 is the output vector; cd ; cv and caARm�n are the output influence matrices of
displacement, velocity and acceleration, respectively. After the state vector,

zðtÞ ¼
xðtÞ

’xðtÞ

" #
AR2n�1; ð21Þ

is introduced, the equations of motion for the physical model described by Eq. (19) can be
transformed into the following state equation of motion:

’zðtÞ ¼ AzðtÞ þ BuðtÞ; ð22Þ

where

A ¼
0n In

�M�1K �M�1E

" #
; B ¼

0n�r

M�1B0

" #
: ð23a;bÞ

AAR2n�2n and BAR2n�r are the system matrix and the input matrix, respectively. The output
equation, Eq. (20), can be transformed as,

yðtÞ ¼ CzðtÞ þ DuðtÞ; ð24Þ

where

C ¼ ½ cd � caM�1K cv � caM�1E �; D ¼ caM�1B0: ð25a;bÞ
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Here, CARm�2n is the output matrix of the state vector zðtÞ; and DARm�r is the direct
transmission matrix. The matrix D will disappear from Eq. (24) when acceleration is not a
measured output.
The natural frequencies and damping ratios can be determined by an eigenanalysis of the

system matrix A in Eq. (23a). The eigenanalysis of the identified equivalent system matrix Ac in
Eq. (18a) should provide corresponding results for a noise-free system. The natural frequencies
and damping ratios in terms of the eigenvalues (si ¼ ai þ jbi; i ¼ 1; 2; :::; n) of A or Ac are,

oi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ b2i

q
and xi ¼ �ai=oi; i ¼ 1; 2; :::; n: ð26a;bÞ

The normal mode shapes are the eigenvectors of matrix M�1K ; which appears as the left-lower
block of matrix A: Although the identified system matrix Ac has the same modal parameters as
matrix A; the distributions of the elements in these two matrices are different. Therefore, the
normal modes cannot be directly determined from the left-lower block of matrix Ac: Hung et al.
[21] presented a transformation matrix T for transforming the identified system matrix Ac into a
matrix of the same type as matrix A: The transformation matrix can be expressed in terms of the
identified matrices Ac and Cc; and the output influence matrices for displacement, velocity and
acceleration, as follows:

T ¼
T1

T2

" #
; ð27Þ

where

T1 ¼ cdCc þ cvCcA
�1
c þ caCcA

�2
c ; T2 ¼ T1Ac: ð28a;bÞ

When only one of the displacement, velocity and acceleration is available to be measured, the
transformation matrices are:

Td ¼
Cc

CcAc

" #
for displacement only; ð29aÞ

Tv ¼ TdA�1
c ¼

CcA
�1
c

Cc

" #
for velocity only; ð29bÞ

Ta ¼ TdA�2
c ¼

CcA
�2
c

CcA
�1
c

" #
for acceleration only: ð29cÞ

The transformed system matrix %A of the same type as physical system matrix A in Eq. (23a) can
be obtained by the following transformation:

%A ¼ TAcT
�1: ð30Þ

The normal mode shapes are the eigenvectors of the negative sub-matrix, which is the left-lower
block of matrix %A:
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4. Numerical examples

A lumped mass model with 3 d.o.f.s [22], shown in Fig. 1 is selected as a case study to illustrate
the availability of the proposed VBARX approach. The parameters of this model are m1 ¼ 1;
m2 ¼ 2; m3 ¼ 3; c1 ¼ c4 ¼ c5 ¼ 0:1; c2 ¼ c3 ¼ 0:2; k1 ¼ 10; k2 ¼ 20 and k3 ¼ 30: The system is
excited at m3; and the time–history responses of displacement, velocity and acceleration, are
picked at m1; m2 and m3; respectively. The fourth order Runge–Kutta method is employed to
calculate the dynamic responses in the numerical examples. The sampling rate of the time series
data is 5Hz, and the length of the recorded data is selected as only 256 points to test whether the
VBARX model can be applied to short-recorded data. Table 1 shows the true values of natural
frequencies and damping ratios of the model with 3 d.o.f.s.
The numerical examples cover four different types of inputs; (1) single sinusoidal input with an

exciting frequency of 0.4Hz; (2) sinusoidal input at ten different frequencies; (3) zero-mean white
noise input, and (4) combined input. The VBAR model without an input force is considered for
comparison to demonstrate the advantage of the proposed method under forced vibration in
Cases 1–3. Table 2 compares the identified natural frequencies, damping ratios and modal
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Fig. 1. 3-d.o.f. lumped mass model.

Table 1

Exact natural frequencies and damping ratios of the 3-d.o.f model

Mode Natural frequency, oi (Hz) Damping ratio, xi (%)

1 0.1699 1.7626

2 0.7120 3.4783

3 1.0537 3.7849
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assurance criteria (MAC) [23] obtained by the proposed approach with those obtained by the
VBAR model under noise-free conditions in Cases 1–3. The MAC is an approximate index of the
accuracy of the identified mode shape.

ARTICLE IN PRESS

Table 2

Comparison of identified natural frequencies, damping ratios and MAC values with various types of input

Mode Natural frequency,

oi (Hz)

Damping ratio,

xi (%)

MAC

(a) Case 1: Single sinusoidal input (0.4Hz) under noise-free condition

VBARX (3,5,1) 1 0.1699 1.7626 1.0000

2 0.7120 3.4783 1.0000

3 1.0537 3.7849 1.0000

VBAR (3,10) 1 0.1699 1.7626 1.0000

0.4000 0.0000

2 0.7120 3.4783 1.0000

3 1.0537 3.7849 1.0000

(b) Case 2: Multiple sinusoidal input (0.1, 0.4, 0.7, 1.0, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8Hz) under noise-free condition

VBARX (3,5,1) 1 0.1699 1.7626 1.0000

2 0.7120 3.4783 1.0000

3 1.0537 3.7849 1.0000

VBAR (3,20) 0.1003 �0.4524

1 0.1697 2.0584 1.0000

0.4000 �0.0156

2 0.7120 3.4789 1.0000

1.0002 0.0008

3 1.0536 3.7864 1.0000

1.2999 0.0003

1.6000 �0.0005

1.9000 0.0001

2.2000 �0.0001

(c) Case 3: White noise type input under noise-free condition

VBARX (3,5,1) 1 0.1699 1.7626 1.0000

2 0.7120 3.4783 1.0000

3 1.0537 3.7849 1.0000

VBAR (3,55) 0.1582 0.6402

0.5396 2.5293

0.6588 0.3509

0.7039 0.5666

0.7750 0.2490

0.8920 0.5423

1.0397 0.1213

1.3148 0.5058

1.4762 0.2008

2.2237 0.1283
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Fig. 2(a) shows the power spectrum density (PSD) of the output displacement response at m3 in
Case 1. The right-sided part of Fig. 3(a) indicates 30 eigenvalues for the VBAR (3,10) model, of
which eight are on or outside the unit circle. Input information is lacking so the VBAR model
cannot distinguish which two eigenvalues are associated with the input-induced mode. Thus, the
VBAR model yields four modes, as shown in Table 2(a). However, the VBARX model
clearly distinguishes the six system eigenvalues, as indicated in the left-sided part of Fig. 3(a) and
Table 2(a). The VBARX (3,5,1) model has 20 eigenvalues, of which five are located exactly in
the origin of the unit circle in this case. Therefore, it seems that only 16 eigenvalues are shown
in the left-sided part of Fig. 3(a). The input-induced mode, as estimated by the VBAR model, can
be manually identified with knowledge of the damping ratio, which is in fact zero. Nevertheless,
when the input includes multi-harmonic components, the estimation of the actual damping ratios
is difficult.
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Fig. 2. PSD of response at m3 of the 3-d.o.f. lumped mass model. (a) Case 1: Sinusoidal input with a single frequency;

(b) Case 2: sinusoidal input with ten various frequencies; (c) Case 3: zero-mean white noise input.
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Fig. 3. Eigenvalue distributions of VBARX and VBAR models. (a) Case 1; (b) Case 2; (c) Case 3; J, true eigenvalue;

� , eigenvalue before discrimination; n, eigenvalue induced by input.
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In Case 2, sinusoidal data of ten different frequencies, 0.1, 0.4, 0.7, 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 and
2.8Hz, are combined to generate the input data, and all data are noise-free. Fig. 2(b) shows the
PSD of the output displacement response at m3: Because the sampling rate is 5Hz and the Nyquist
frequency [24] is 2.5Hz, the last harmonic component with a frequency 2.8Hz is not sampled
adequately. Table 2(b) and Fig. 3(b) indicate that the VBARX model can also yield correctly
system modes when the input data have multi-harmonic components. However, the VBAR model
yields several spurious modes induced by input data.
In Case 3, the input data are white noise type of force with zero mean, and all data are noise-

free. Fig. 2(c) shows the PSD of the output displacement response at m3: Table 2(c) and Fig. 3(c)
indicate that the VBARX model can still yield exact system modes with white noise input. In the
case of white noise excitation with short-recorded data, the VBAR model cannot distinguish the
system modes from the input-induced modes. Additionally, Table 2(c) shows that the damping
ratios identified by the VBAR model are not zero. Therefore, the input-induced modes should be
manually identified using further information.
The VBARX model can yield accurate results with smaller order than the VBAR model, and it

can also automatically identify modal parameters without other auxiliaries for selecting system
modes in Cases 1–3. Case 4 is used to examine the accuracy of only the VBARX model. The input
data in Cases 2 and 3 were combined to excite the system at m3: Fig. 4 shows the PSD of the
displacement response at m3: Zero-mean white noise with an r.m.s. of 10%, 20% and 30% of the
measured response was added to the noise-free response data to simulate measurement noise.
Table 3 lists identified natural frequencies, damping ratios and MAC values with combined input
at various noise levels in Case 4. It indicates that the VBARX model can yield quite accurate
results when noise levels are below 30%. Case 4 also shows that the order of the VBARX model
will be increased when measured data are contaminated by more noise. The selection of order for
the VBARX model and other identification methods is a beginning but important step in a
complete identification procedure. If the order chosen is too small, some of weaker modes cannot
be identified. In contrast, if the order is too large, it not only costs too much, but also generates
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Fig. 4. PSD of response at m3 of the 3-d.o.f. lumped mass model in Case 4.
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too many spurious modes. The definite steps to choose order for the proposed VBARX model are
still developing. In addition, an experienced user may select the order better.

5. Experimental example and discussion

A benchmark model established by NCREE in Taiwan [25] is used as an experimental model to
test the proposed VBARX approach can be applied to real-world structures. This benchmark
model is a five-story 1

2
-scale steel frame with dimensions of 3� 2 m2 in-plane and 1.3m height for

each story. Fig. 5 depicts the top view and the side view of the frame structure, and Table 4
presents the natural frequencies determined by Loh et al. [26]. The first and second modes in the X
and Y directions are represented by X1; X2; Y1 and Y2: The experimental data are seismic
responses generated through a shaking table test. Furthermore, the seismic records of ground
acceleration in the El. Centro and Kobe earthquakes were taken as the accelerations of the
shaking table. Kobe XY 8% implies that the loading acceleration is 8% in both the X - and Y

directions of that of the Kobe earthquake; El. Centro XY 20%30% indicates that the loading
acceleration is 20% in X direction and 30% in Y direction of that of the El. Centro earthquake.
Fig. 6 presents the orientations and positions of the accelerometers on the benchmark model.

A3–A12 (X direction) and A15, A17, A19, A21 and A23 (Y direction) are selected as output
channels; A1, A2 and A13 are selected as input channels. Fig. 7 shows the time–history and the
PSD of the accelerations measured at A1 in the X direction under both seismic accelerations. The
sampling rate of the original data series is 200Hz, and the number of data is approximately 6000
points. Only 2048 data points in Fig. 8 were selected in this example. The original data were firstly
fed into a 50Hz anti-aliasing low pass filter, and then the filtered data were resampled the at a
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Table 3

Case 4: Identified natural frequencies, damping ratios and MAC values with combined input at various noise levels

Mode Natural frequency,

oi (Hz)

Damping ratio,

xi (%)

MAC

Noise-free 1 0.1699 1.7626 1.0000

VBARX (3,5,1) 2 0.7120 3.4783 1.0000

3 1.0537 3.7849 1.0000

10% noise 1 0.1688 1.6855 1.0000

VBARX (3,10,1) 2 0.7108 3.2921 0.9978

3 1.0541 3.1578 0.9988

20% noise 1 0.1682 1.3781 0.9997

VBARX (3,20,1) 2 0.7096 2.6812 0.9999

3 1.0451 2.4406 0.9950

30% noise 1 0.1726 1.1673 0.9966

VBARX (3,35,1) 2 0.7172 2.1641 0.9906

3 1.0596 2.3064 0.9547
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sampling rate of 100Hz. Consequently, a total of 1024 data points per channel were used in this
experimental analysis.
Table 5 lists 15 natural frequencies and damping ratios identified by the VBARX model in the

Kobe XY 8% and El. Centro XY 20%30% cases. Here, Ti refers to the ith torsion mode. The
natural frequencies in the two seismic cases agree closely with each other. The variances of the
identified damping ratios are much higher than those of the identified natural frequencies,
according to the stochastic characteristics and non-linearity of the measured data. Tables 6 and 7
list the first 15 normal mode shapes in X ; Y and T directions in both seismic cases. Tables 5–7
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Fig. 5. (a) Top view of frame structure and (b) side view of frame structure.

Table 4

Natural frequencies of frame structure [26]

Mode Natural frequency (Hz)

X1 1.4306

Y1 2.1413

X2 4.6296

Y2 6.9930
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show that the VBARX model can identify not only the natural frequencies and the damping
ratios, but also the normal mode shapes. Fig. 9 shows some of the normal mode shapes described
in Tables 6 and 7. These normal mode shapes are similar between the two seismic cases. The
identified results can be compared with literatures [21,26].

6. Conclusion

This work proposes a VBARX model, which is an extension of VBAR model, to identify the
modal parameters of structures using measured input and output data. This method not only
accurately determines the natural frequency and damping ratio, but also effectively extracts the
normal mode shapes. The main advantage of this proposed VBARX approach is that the system
eigenvalues can be clearly separated from the spurious modes by the boundary of the unit circle.
When the measured data do not concern free responses but the forced responses, the VBAR

model without input excitation cannot easily separate the system modes from input-induced
modes. In contrast, the proposed VBARX model can easily determine the true order of system
modes, separate them from the spurious modes and derive the equivalent system. The results of
both numerical and experimental examples indicate that the VBARX model determines the
system modes more efficiently than the VBAR model. Both the VBAR model and the VBARX

ARTICLE IN PRESS

Fig. 6. Orientation and position of accelerometers on frame model [25].
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Fig. 7. (a) Time–history and PSD of 8% Kobe earthquake input acceleration. (b) Time–history and PSD of 20% El.

Centro earthquake input acceleration.
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Fig. 8. Selected periods of 8% Kobe and 20% El. Centro earthquakes.

Table 5

Comparison of natural frequencies and damping ratios identified by VBARX (15,30,3) model in Kobe XY 8% and El.

Centro XY 20%30% cases

Mode No. Kobe XY 8% case El. Centro XY 20%30% case

Natural frequency,

oi (Hz)

Damping ratio,

xi (%)

Natural frequency,

oi (Hz)

Damping ratio,

xi (%)

1 (X1) 1.4055 0.9004 1.3928 1.6106

2 (Y1) 2.0822 2.0673 2.0815 3.0574

3 (T1) 3.5321 0.3862 3.5402 0.4436

4 (X2) 4.5335 0.1663 4.5503 0.2820

5 (Y2) 6.8932 0.0963 6.9198 1.3420

6 (X3) 8.2139 0.1734 8.2332 0.6265

7 (T2) 11.4386 0.3196 11.3874 5.3293

8 (X4) 12.3785 0.3396 12.3719 0.0264

9 (Y3) 12.6858 0.2129 12.6421 0.3351

10 (X5) 16.0047 0.1486 15.9997 0.1034

11 (Y4) 18.2491 0.7647 18.3444 0.8313

12 (T3) 21.2541 0.1553 21.2410 0.2800

13 (Y5) 25.2142 0.0690 25.1311 0.1507

14 (T4) 32.1251 0.1567 32.1913 0.2306

15 (T5) 40.5410 0.0522 40.2912 0.4694
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Table 6

Position Mode (Hz)

1 (X1) 2 (Y1) 3 (T1) 4 (X2) 5 (Y2) 6 (X3) 7 (T2) 8 (X4)

1.4055 2.0822 3.5321 4.5335 6.8932 8.2139 11.4386 12.3785

(a) Normal mode shapes determined by VBARX (15,30,3) model in Kobe XY 8% case (Mode 1–8)

A3 0.0857 �0.0011 �0.0506 �0.2501 0.0033 0.3928 0.1660 0.4244

A5 0.2085 0.0001 �0.1307 �0.4366 0.0044 0.2517 0.3100 �0.2095

A7 0.3004 0.0030 �0.2025 �0.2840 0.0013 �0.3058 0.2098 �0.2125

A9 0.3952 0.0045 �0.2722 0.0650 �0.0017 �0.3044 �0.0323 0.4040

A11 0.4424 �0.0083 �0.3039 0.4032 0.0072 0.3044 �0.2813 �0.1726

A4 0.0874 0.0013 0.0543 �0.2494 0.0072 0.3894 �0.1607 0.4245

A6 0.2132 �0.0020 0.1308 �0.4195 �0.0102 0.2415 �0.2893 �0.2064

A8 0.3151 0.0034 0.2124 �0.3005 �0.0010 �0.3223 �0.2145 �0.2175

A10 0.3956 0.0000 0.2723 0.0668 �0.0012 �0.3026 0.0292 0.3993

A12 0.4429 0.0094 0.2954 0.4076 �0.0057 0.3128 0.2608 �0.1904

A15 �0.0126 0.1193 0.0726 0.0150 0.3386 �0.0128 �0.3266 �0.1522

A17 �0.0137 0.2844 0.2026 0.0062 0.6036 �0.0042 �0.4713 �0.0749

A19 �0.0197 0.4391 0.3210 0.0043 0.4391 0.0038 �0.2473 0.1252

A21 �0.0243 0.5557 0.4147 �0.0034 �0.0640 0.0065 0.1058 0.1077

A23 �0.0271 0.6349 0.4744 �0.0079 �0.5691 0.0013 0.3558 �0.1263

(b) Normal mode shapes determined by VBARX (15,30,3) model in Kobe XY 8% case (Mode 9–15)

9 (Y3) 10 (X5) 11 (Y4) 12 (T3) 13 (Y5) 14 (T4) 15 (T5)

12.6858 16.0047 18.2491 21.2541 25.2142 32.1251 40.5410

A3 0.0074 �0.3153 �0.0944 0.2735 �0.0520 0.3211 0.2632

A5 0.0119 0.4121 0.0557 0.1892 �0.0220 �0.1398 �0.3286

A7 0.0116 �0.3696 �0.0213 �0.2045 �0.0293 �0.1693 0.2958

A9 0.0015 0.2756 �0.0063 �0.2222 0.0008 0.3061 �0.1897

A11 �0.0258 �0.0916 �0.0334 0.2120 �0.0604 �0.1166 0.0734

A4 0.0049 �0.3152 0.1017 �0.2622 0.0152 �0.3163 �0.2445

A6 �0.0117 0.4079 �0.0846 �0.1842 0.0104 0.1317 0.3040

A8 �0.0201 �0.3966 0.0562 0.2112 �0.0261 0.1892 �0.2862

A10 0.0005 0.2769 �0.0109 0.2216 �0.0530 �0.3045 0.1705

A12 0.0240 �0.0993 0.0407 �0.2167 0.0588 0.1327 �0.0570

A15 0.5414 �0.0015 0.7245 �0.3581 �0.4695 �0.4224 �0.3091

A17 0.3332 �0.0003 �0.3809 �0.2746 0.5922 0.1922 0.4015

A19 �0.4615 0.0047 �0.1872 0.2942 �0.5534 0.2430 �0.3600

A21 �0.4334 �0.0004 0.3754 0.3395 0.3029 �0.4107 0.2024

A23 0.4391 �0.0089 �0.3434 �0.3232 �0.1259 0.1866 �0.0097
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Table 7

Position Mode (Hz)

1 (X1) 2 (Y1) 3 (T1) 4 (X2) 5 (Y2) 6 (X3) 7 (T2) 8 (X4)

1.3928 2.0815 3.5402 4.5503 6.9198 8.2332 11.3874 12.3719

(a)Normal mode shapes determined by VBARX (15,30,3) model in El. Centro XY 20%30% case (Mode 1–8)

A3 0.0890 �0.0011 �0.0477 �0.2463 0.0014 0.3865 0.1479 0.4225

A5 0.2151 �0.0043 �0.1123 �0.4343 0.0015 0.2684 0.1828 �0.2201

A7 0.2974 0.0022 �0.1798 �0.2707 0.0004 �0.2863 0.1312 �0.2216

A9 0.3982 0.0039 �0.2430 0.0677 �0.0028 �0.2934 0.0248 0.4283

A11 0.4452 �0.0092 �0.2647 0.4008 0.0083 0.3039 �0.1391 �0.1761

A4 0.0891 0.0009 0.0439 �0.2455 0.0057 0.3712 �0.0496 0.4435

A6 0.2113 �0.0018 0.1174 �0.4307 �0.0033 0.2337 �0.2251 �0.1929

A8 0.3128 0.0015 0.1847 �0.2958 �0.0014 �0.3193 �0.1466 �0.2205

A10 0.3914 �0.0025 0.2428 0.0699 �0.0017 �0.2899 �0.0056 0.4280

A12 0.4394 0.0073 0.2784 0.4057 �0.0068 0.3103 0.1976 �0.2059

A15 0.0046 0.1151 0.0548 0.0610 0.3357 �0.0032 0.2356 0.0060

A17 0.0177 0.2811 0.2006 0.0388 0.6047 �0.1138 �0.3290 0.0266

A19 0.0250 0.4363 0.3443 0.0073 0.4385 �0.1170 �0.4964 0.0121

A21 0.0371 0.5566 0.4498 �0.0312 �0.0651 �0.0136 �0.0837 �0.0161

A23 0.0402 0.6383 0.5228 �0.0567 �0.5700 0.1290 0.6137 �0.0136

(b) Normal mode shapes determined by VBARX (15,30,3) model in El. Centro XY 20%30% case (Mode 9–15)

9 (Y3) 10 (X5) 11 (Y4) 12 (T3) 13 (Y5) 14 (T4) 15 (T5)

12.6421 15.9997 18.3444 21.2410 25.1311 32.1913 40.2912

A3 �0.0037 �0.3146 �0.0849 0.2345 �0.0113 0.3219 0.2680

A5 0.0166 0.4102 0.1041 0.2433 0.0116 �0.1801 �0.3686

A7 0.0150 �0.3675 �0.0285 �0.2125 �0.0179 �0.1534 0.2587

A9 �0.0053 0.2759 �0.0195 �0.2271 0.0007 0.2856 �0.1552

A11 �0.0203 �0.0845 �0.0202 0.2193 �0.0137 �0.0882 0.0253

A4 �0.0059 �0.3150 0.1016 �0.2077 �0.0071 �0.3431 �0.3005

A6 �0.0115 0.4148 �0.1275 �0.2435 �0.0065 0.1667 0.3325

A8 �0.0142 �0.3990 0.0733 0.2312 0.0020 0.1597 �0.2725

A10 �0.0059 0.2735 �0.0068 0.2229 �0.0217 �0.2807 0.1123

A12 0.0262 �0.0934 �0.0048 �0.2275 0.0010 0.0996 �0.0885

A15 0.5492 0.0018 0.7741 �0.3734 �0.5056 �0.4842 �0.2932

A17 0.3159 0.0141 �0.3384 �0.2647 0.5867 0.2276 0.4049

A19 �0.4645 0.0001 �0.1953 0.3759 �0.5437 0.2192 �0.3488

A21 �0.4247 �0.0123 0.3847 0.2483 0.3168 �0.3540 0.1810

A23 0.4477 �0.0010 �0.2202 �0.2670 �0.0545 0.1782 0.0282
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model are backward difference models, and the difference between the two methods is in their
inclusion of input data or not. The VBAR model can be regarded as a special case of the VBARX
model without input data.
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Fig. 9. Normal mode shapes in Kobe XY 8% and El. Centro XY 20%30% cases. (a) Mode 8 (X4); (b) Mode10 (X5);

(c) Mode 12 (T3); (d) Mode 14 (T4).
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